Nebraska Wind Industry Investment Report

Over the last decade, $3.2 billion from wind industry investments stimulated rural economies, created jobs, provided income for farmers and ranchers, saved water, and reduced CO2 emissions for Nebraskans.
Nebraska has been transformed by the wind industry. The wind industry investment in Nebraska is an investment in jobs: in operations, maintenance, construction, and here in Lancaster County, jobs in the engineering and design businesses. But the renewable power industry does so much more. It directly supports our school districts, our counties, our farmers and our ranchers. It is one of the few investment strategies that grow our rural economies.

— SEAN FLOWERDAY, Lancaster County Commissioner
Table of Contents

- **Overview** 4
- **Methodology** 5
- **Wind is a Fixed Cost Resource** 6
- **The Environmental and Economic Impacts of Wind** 8
- **Summary** 11
- **Appendix I** 12
 - Total Cumulative Economic Activity
- **Appendix II** 14
 - Nebraska Wind Investment Timeline
- **Appendix III** 15
 - Select Economic Impacts by Legislative Districts
Overview

It is an undeniable fact that wind energy development in Nebraska and the wind-powered electricity generating facilities in the state have had, and continue to have, a significant, positive economic impact. In addition to property taxes and other payments that directly benefit the landowners and communities surrounding wind projects, additional benefits include new investments, job creation, wages paid, and dynamic spending in local, rural economies.

The sheer amount of growth in wind-powered electrical generation in Nebraska over the past decade has been significant. The first wind project in Nebraska began operating in 1998. At the beginning of 2009, the state had only installed 71.2 MW of wind-powered electrical generation capacity. By the middle of 2019, however, the cumulative capacity installed had grown to 2,125 MW. That is a growth of 2,885% over the past decade. This growth is largely seen in rural areas of the state, and again produces significant economic benefits for the surrounding communities.

What follows are cumulative aggregated figures for the economic impacts of wind energy electrical generation in Nebraska. Included in these figures are specific numbers of jobs created and wages paid, both for the initial construction phase as well as the operational phase of a wind project, the secondary impacts of local spending that occurs within the economy due to the construction and operation of a wind project, the landowner lease payments made for each project, and finally the nameplate capacity taxes and real property taxes paid during the life of a project are also included. These aggregated figures are used in order to provide a snapshot of the total economic activity for these wind projects that have occurred to date. Only wind projects that are currently operational were used.¹

¹ The data obtained for the operational life of each wind project was found at the Nebraska Energy Office, here: http://www.neo.ne.gov/statshtml/89.htm. For each project, the construction phase was considered to have occurred 1 year prior to the start of operations and the operational start date is based upon the first year that a project began to show kilowatt-hours generated in the Nebraska Energy Office tables.
Methodology

The methodology used to generate these aggregate numbers was largely reliant upon the National Renewable Energy Laboratory (NREL) and their Jobs and Economic Development Impact Model. The National Renewable Energy Laboratory states the following, regarding the methodology of their modeling, “The intent of the Jobs and Economic Development Impact (JEDI) models is to construct a reasonable profile of investments to demonstrate the employment and economic impacts that will likely result during the construction and operating periods [of projects].” The JEDI models are an incredibly useful tool to better understand the overall economic impact that wind energy electrical generation facilities have had and continue to have in Nebraska. The JEDI models were used specifically for the total investment numbers, the construction phase and operational phase jobs created, wages paid and local spending into the economy, and for the landowner lease payments made. Further, the operational phase jobs created, wages paid and local spending into the economy were factored utilizing information from industry sources to make sure the economic impacts are as accurate as possible. The nameplate capacity tax and the real property taxes collected were found using data from the Nebraska Department of Revenue.²

² JEDI models utilize economic data (multipliers and consumption patterns) derived from the Minnesota IMPLAN Group (MIG) state-level data to estimate the local economic activity and the resulting impact from new energy generation plants. MIG compiles and aggregates national and regional economic and demographic data to calculate inter-industry linkages and the relationships between changes in demand for goods and services, and the associated economic activity at the local, state and regional levels. State multipliers for employment, wage and salary, and output and personal spending patterns are derived from the MIG accounting software using currently available data. https://www.nrel.gov/analysis/jedi/methodology.html

³ The nameplate capacity tax is set at $3,518 per installed MW of nameplate capacity. Nebraska Department of Revenue Directive. For the real property taxes paid, the methodology was as follows. In the Impact of Wind Energy on Property Taxes in Nebraska report done by Baird Holm in 2013, an estimate was used of $3,100 of real property taxes paid per installed MW of nameplate capacity. In order to account for fluctuations in various levy rates, over time and across counties, the average levy rate for each county containing a wind project was factored against the average levy rate of the state as a whole, and this factor was used to adjust this $3,100 figure accordingly to reflect the proportional and relative influence of that specific county's levy rate that year against an aggregate state-wide average on a per-MW nameplate capacity figure. Overall, this allows the real property tax figure paid to reflect the fact that a county with a lower than average levy would have a wind project with a figure lower than the $3,100 average, and vice versa. http://www.revenue.nebraska.gov/PAD/research/valuation/avg_rates/avg_rates_by_cnty.html
Wind is a **Fixed Cost Resource**
Another significant example of the economic benefits of wind as a resource for utility scale electricity generating facilities is the fact that wind, as a resource, is a zero cost, fixed cost resource. This is significant in terms of the stability of an initial investment made into utility-scale facilities as well as the long-term price impacts for those who are purchasing and utilizing the electricity generated. This is due to the cost of production for wind-powered electricity generation facilities being entirely independent of the cost of the resource, or input, wind, that is required to generate the electricity. This is in contrast to other forms of electricity generation, namely those that use fossil fuels as resources, where the final cost of generation of electricity is entirely dependent upon the coal, natural gas or other fuel inputs needed to produce this electricity. This also means that the costs of these inputs then directly impact the total cost of the generation of electricity, which can lead to dramatic fluctuations in the total cost in the short term, and that over the long term there are significant risks of costs rising simply due to increases in the prices of fuel resources. This cost factor and risk are entirely non-existent for wind.

For example, most wind-powered utility-scale electricity generating facilities in Nebraska work on Power Purchase Agreement (PPA) contracts that last approximately twenty years. There are initial investment and operating costs for the facility, but the cost for the fuel resource needed to produce electricity, wind, is $0 in year one of the project and will still be $0 in year 20 of the project. Let’s contrast that with other resources used to generate electricity. According to the Producer Price Index by Commodity for Fuels and Related Products and Power provided by the U.S. Bureau of Labor Statistics, which is a data that “measures price changes received by domestic establishments for the industry’s output sold outside the industry,” and “reflect the price trends of a constant set of goods that together represent the total output of an industry,” over the past twenty years the price of coal has increased by nearly 120% and the price of natural gas has increased by over 80%.

Twenty-year Cost: Wind vs. Coal & Natural Gas

...THE COST FOR THE RESOURCE NEEDED TO PRODUCE ELECTRICITY, WIND, IS $0 IN YEAR ONE OF THE PROJECT AND WILL ALSO BE $0 IN YEAR 20 OF THE PROJECT.

...OVER THE PAST TWENTY YEARS, THE AVERAGE CHANGE IN SELLING PRICES HAS INCREASED NEARLY 120% FOR COAL, AND OVER 80% FOR NATURAL GAS.

These are price increases that factor in to the total cost of the production of electricity for facilities that utilize these resources, and again, are costs not borne by wind, as a zero cost, fixed cost resource. This again provides an inherent, structural advantage for the investment in facilities that generate wind, and generation of wind electricity compared to those that rely on other costly resources to power their generation.

The Environmental and Economic Impacts of Wind
A final benefit of wind as a resource for utility-scale electricity generating facilities is the fact that wind has extremely low environmental impact. Many environmental impacts in utility-scale electricity generation can be quantified and turned into meaningful costs passed along to consumers. Specifically, water usage, waste production, and the greenhouse effect (GHG) released into the atmosphere are all demonstrably lower for electricity generated using wind than they are for coal, natural gas or nuclear power.

The utilization of wind for the generation of electricity greatly reduces water consumption in Nebraska and significantly when compared to that of other fuel sources. According to the report “Saving Water with Wind Energy,” done by the European Wind Energy Association (EWEA), water consumption for cooling in power generation varies according to the type of system and generation technology. Wind turbines, for instance, might only need water for cooling purposes (generator, transformer, inverter) and occasional blade washing. The estimates from this report found that “it is possible to estimate that the average water consumption of coal power plants is 1.9 m³/MWh, water consumption of gas plants is 0.7 m³/MWh and of nuclear is 2.7 m³/MWh.” This is the equivalent of 501 gallons of water per MWh for coal, 185 gallons of water per MWh for natural gas, and 713 gallons of water per MWh for nuclear. This is above and beyond the amounts of water used by wind facilities. When this is translated to actual production of electricity, this amounts to savings by Nebraska wind by as much as 2.4 billion gallons of water relative to coal, nearly 900,000 gallons of water relative to natural gas, and over 3.4 billion gallons of water relative to nuclear. The American Wind Energy Association estimates Nebraska’s 2018 annual state water consumption savings at 3.5 billion gallons of water due to the utilization of wind for the generation of electricity. Over time, this number has only grown too as the amount of electricity generated by wind in Nebraska has grown. In 2011, Nebraska generated just over 1 million MWhs of electricity with wind power and by 2018 this number was expected to surpass 5 million. Furthermore, the cumulative impacts of these water savings are tremendous. From 2011 to 2018, the cumulative water consumption savings from the utilization of wind to generate electricity relative to other forms of electricity are as follows: as much as 7.1 billion gallons of water saved relative to coal, 2.6 billion gallons of water saved relative to natural gas and 10.1 billion gallons of water saved relative to nuclear.

Using wind for electricity generation in Nebraska is also demonstrably superior in terms of environmental impact in air quality and greenhouse gases like carbon dioxide being released into the atmosphere, when compared to the other fuel sources. The difference in these impacts is significant in terms of their environmental impacts in the short run, and cumulatively, moving forward, given the upward trend in utility-scale wind energy electricity generation over time.

According to the American Wind Energy Association (AWEA), Nebraska avoided approximately 6.4 million metric tons in carbon dioxide (CO₂) emissions in 2018 through the use of power generated using wind. Nebraska wind-powered electricity generation as reported by the Nebraska Energy Office

6 http://www.neo.ne.gov/programs/stats/inl/89.htm
was approximately 4.8 million MWhs of electricity in 2017 and was expected to surpass 5 million MWhs in 2018. This reflects a conservative estimate of approximately 1.3 metric tons of carbon dioxide emissions avoided from each MWh of electricity generated using wind.⁷

The Federal Government put together an Interagency Working Group on the Social Cost of Greenhouse Gases, and in a Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis filed in August of 2016, estimates are given to demonstrate “monetized damages associated with an incremental increase in carbon emissions in a given year.”⁸ These estimates of the costs of carbon are intended to be a “comprehensive estimate of climate change damages” and include “changes in net agricultural productivity, human health, property damages from increased flood risk, and changes in energy system costs, such as reduced costs for heating and increased costs for air conditioning.” The estimate provided in this report show costs as they increase over time on a dollars per-metric ton value, and with varying assumptions given for the likely increases in costs over time. A midpoint baseline value from the report shows a per-metric ton cost of carbon dioxide (in 2007 constant dollars) of $36 in 2015 and estimated to be $42 by 2020. [For the calculations in this report, a weighted value is used, whereby the increase is reflected as $31 per metric ton of carbon dioxide in 2010 with a dollar per year increase through 2018].¹

In Nebraska, when utilizing a social cost of carbon approach, the savings due to the utilization of wind for electricity generation are significant. For example, in 2018, with an estimated 6.4 million metric tons of carbon dioxide emissions avoided due to the generation of electricity using wind, this means that the total cost of these carbon emissions was approximately $243.2 million. Again, the cumulative impacts are much larger, and estimated to continue to grow as more wind energy facilities come online. From 2011-2018, for example, the estimated cumulative economic impact of the social costs of the carbon dioxide emissions avoided in Nebraska due to the utilization of wind for the generation of electricity is just over $1.1 billion. This is an economic savings of approximately $587 for every single person living in Nebraska. These are economic impacts that cannot be ignored, and which again are only expected to continue to grow as more and more utility-scale wind electricity generation facilities are built and in operation in Nebraska.

⁷ http://www.neo.ne.gov/programs/stats/inf/89.htm
Summary

The simple fact is this. The development of wind-powered electricity generation facilities has had, and continues to have, a significant economic impact in Nebraska. The jobs created, dollars spent in the rural communities, property taxes offset alongside the direct and indirect positive impacts that this activity has had on local landowners is evident. The degree to which investment in wind energy in Nebraska and the corresponding economic impacts have grown over the past several years, on both a year over year and aggregate perspective, is truly meaningful. This growth can be attributed to the elimination of investment barriers in the policy arena, where state policy, in particular, is much more conducive to renewable energy investment than it was even five or ten years ago. Policies are much more closely aligned to how other energy sources are taxed and regulated and this has helped create an environment where the growth in wind-powered electricity generation facility investment has been possible.

Wind-powered electricity generation capacity has grown by 2,885% over the past decade. This growth has contributed to the over $3.2 billion in investments we have seen in the state in wind-powered electricity generation facilities. The construction and operation of these facilities has led to job creation alongside wages paid and money spent in local communities, with over 8,000 jobs created or sustained and over $1.4 billion in wages paid and spending into the communities. This growth and investment, alongside the fixed cost of wind as an input and a resource, and the estimated $1.1 billion in consumer savings due to the environmental benefits of wind in Nebraska shows the real value that wind energy in Nebraska has and will continue to have going forward. This kind of impact on Nebraska's economic development should not, cannot be ignored and instead should be encouraged.

WIND-POWERED ELECTRICITY GENERATION HAS HAD A SIGNIFICANT IMPACT IN NEBRASKA

» JOBS CREATED
» DOLLARS IN LOCAL COMMUNITIES
» PROPERTY TAX OFFSET

Wind-Powered Electricity Growth in Nebraska

INCREASED BY 2,885%
OVER THE PAST DECADE

$3.2 BILLION IN INVESTMENTS IN WIND GENERATION FACILITIES

OVER 8,000 JOBS CREATED OR SUSTAINED

The Advanced Power Alliance is the industry trade association created to promote the development of energy resources as clean, reliable, affordable, and infinite sources of power. The Alliance is the advanced power industry’s voice within the fourteen states of the Electric Reliability Council of Texas (ERCOT) and Southwest Power Pool (SPP) systems: Arkansas, Iowa, Kansas, Louisiana, Minnesota, Missouri, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas and Wyoming.
APPENDIX I
Cumulative Economic Activity 1998 through 2019

1,048 Turbines installed for a total nameplate capacity of 2,125 Megawatts
7,640 construction phase jobs created
$507.9 million in construction phase wages paid
$874.7 million in construction phase local spending into the economy
405 operational phase jobs created or sustained

Year-by-Year & Total Cumulative Economic Activity – 1998 through 2019

<table>
<thead>
<tr>
<th>ITEM AND YEAR</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbines</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td>27</td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Nameplate Capacity</td>
<td>0.00</td>
<td>59.4</td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td>140.0</td>
<td></td>
</tr>
<tr>
<td>Construction Year Jobs</td>
<td>0.00</td>
<td>57.25</td>
<td>171.75</td>
<td>0.00</td>
<td>0.00</td>
<td>246.67</td>
<td>384.00</td>
<td>239.58</td>
</tr>
<tr>
<td>Construction Year Wages</td>
<td>$0</td>
<td>$3,125,000</td>
<td>$9,375,000</td>
<td>$0</td>
<td>$0</td>
<td>$13,416,667</td>
<td>$20,900,000</td>
<td>$13,108,333</td>
</tr>
<tr>
<td>Construction Year Local Spending</td>
<td>$0</td>
<td>$5,078,317</td>
<td>$15,234,951</td>
<td>$0</td>
<td>$0</td>
<td>$22,508,755</td>
<td>$34,949,470</td>
<td>$21,046,803</td>
</tr>
<tr>
<td>Operations Year Jobs</td>
<td>0.59</td>
<td>0.59</td>
<td>1.33</td>
<td>3.56</td>
<td>3.56</td>
<td>3.56</td>
<td>6.89</td>
<td>12.06</td>
</tr>
<tr>
<td>Operations Year Wages</td>
<td>$38,415</td>
<td>$38,415</td>
<td>$86,678</td>
<td>$231,465</td>
<td>$231,465</td>
<td>$231,465</td>
<td>$448,132</td>
<td>$783,965</td>
</tr>
<tr>
<td>Operations Year Local Spending</td>
<td>$40,336</td>
<td>$40,336</td>
<td>$91,011</td>
<td>$243,038</td>
<td>$243,038</td>
<td>$243,038</td>
<td>$470,538</td>
<td>$823,163</td>
</tr>
<tr>
<td>Operations Year Nameplate Capacity Taxes</td>
<td>$41,583</td>
<td>$41,583</td>
<td>$93,825</td>
<td>$250,552</td>
<td>$250,552</td>
<td>$250,552</td>
<td>$485,085</td>
<td>$848,612</td>
</tr>
<tr>
<td>Operations Year Landowner Lease Payments</td>
<td>$45,000</td>
<td>$38,700</td>
<td>$83,250</td>
<td>$216,900</td>
<td>$216,900</td>
<td>$216,900</td>
<td>$419,400</td>
<td>$732,900</td>
</tr>
<tr>
<td>Total Local Economy Activity Jobs</td>
<td>1</td>
<td>58</td>
<td>173</td>
<td>4</td>
<td>4</td>
<td>250</td>
<td>391</td>
<td>252</td>
</tr>
<tr>
<td>Total Local Economy Activity Wages & Spending</td>
<td>$78,751</td>
<td>$6,282,048</td>
<td>$24,787,640</td>
<td>$474,503</td>
<td>$474,503</td>
<td>$36,399,925</td>
<td>$56,768,139</td>
<td>$35,762,265</td>
</tr>
<tr>
<td>Real Property Taxes Paid</td>
<td>$36,015</td>
<td>$35,974</td>
<td>$81,222</td>
<td>$219,737</td>
<td>$220,446</td>
<td>$220,399</td>
<td>$422,312</td>
<td>$734,746</td>
</tr>
<tr>
<td>Total Investment</td>
<td>$0</td>
<td>$0</td>
<td>$89,595,126</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$121,493,976</td>
<td>$212,608,246</td>
</tr>
</tbody>
</table>

$26.3 million in operational phase wages paid

$27.6 million in operational phase local spending into the economy

$28.7 million in nameplate capacity taxes paid

$24.6 million in landowner lease payments

$24.1 million in real property taxes paid

$3.2 billion in investments

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbines</td>
<td>29</td>
<td>72</td>
<td>44</td>
<td>162</td>
<td>41</td>
<td>220</td>
<td>56</td>
<td>194</td>
<td>64</td>
<td>1,048</td>
</tr>
<tr>
<td>Nameplate Capacity</td>
<td>43.5</td>
<td>122.0</td>
<td>74.8</td>
<td>276.9</td>
<td>73.4</td>
<td>435.8</td>
<td>96.8</td>
<td>551.0</td>
<td>160.0</td>
<td>2,125</td>
</tr>
<tr>
<td>Construction Year Jobs</td>
<td>192.75</td>
<td>464.83</td>
<td>876.92</td>
<td>400.00</td>
<td>660.25</td>
<td>1,148.67</td>
<td>517.08</td>
<td>1,947.50</td>
<td>276.50</td>
<td>7,640</td>
</tr>
<tr>
<td>Construction Year Wages</td>
<td>$10,516,667</td>
<td>$25,308,333</td>
<td>$47,691,667</td>
<td>$21,808,333</td>
<td>$40,775,000</td>
<td>$115,816,667</td>
<td>$20,900,000</td>
<td>$13,108,333</td>
<td>$160.0</td>
<td>$507,941,667</td>
</tr>
<tr>
<td>Construction Year Local Spending</td>
<td>$1,048</td>
<td>$41,442,331</td>
<td>$82,329,333</td>
<td>$36,698,412</td>
<td>$69,741,826</td>
<td>$109,966,631</td>
<td>$202,610,320</td>
<td>$186,241,976</td>
<td>$26,273,135</td>
<td>$874,702,560</td>
</tr>
<tr>
<td>Operations Year Jobs</td>
<td>56</td>
<td>194</td>
<td>64</td>
<td>220</td>
<td>56</td>
<td>194</td>
<td>64</td>
<td>194</td>
<td>64</td>
<td>2,125</td>
</tr>
<tr>
<td>Operations Year Wages</td>
<td>$38,415</td>
<td>$86,678</td>
<td>$231,465</td>
<td>$231,465</td>
<td>$981,809</td>
<td>$2,332,048</td>
<td>$2,686,840</td>
<td>$3,278,015</td>
<td>$4,321,996</td>
<td>$4,760,557</td>
</tr>
<tr>
<td>Operations Year Local Spending</td>
<td>$40,336</td>
<td>$91,011</td>
<td>$243,038</td>
<td>$243,038</td>
<td>$1,030,899</td>
<td>$2,332,048</td>
<td>$2,686,840</td>
<td>$3,278,015</td>
<td>$4,321,996</td>
<td>$4,760,557</td>
</tr>
<tr>
<td>Operations Year Nameplate Capacity Taxes</td>
<td>$41,583</td>
<td>$93,825</td>
<td>$250,552</td>
<td>$250,552</td>
<td>$1,062,770</td>
<td>$2,332,048</td>
<td>$2,686,840</td>
<td>$3,278,015</td>
<td>$4,321,996</td>
<td>$4,760,557</td>
</tr>
<tr>
<td>Operations Year Landowner Lease Payments</td>
<td>$45,000</td>
<td>$38,700</td>
<td>$83,250</td>
<td>$216,900</td>
<td>$45,000</td>
<td>$38,700</td>
<td>$83,250</td>
<td>$216,900</td>
<td>$45,000</td>
<td>$38,700</td>
</tr>
</tbody>
</table>

Total Local Economy Activity Jobs | 15.10 | 17.42 | 23.46 | 35.88 | 41.34 | 50.43 | 66.49 | 73.24 | 48.87 | 405 |

Total Local Economy Activity Wages | $78,751 | $8,282,068 | $24,787,640 | $474,503 | $474,503 | $36,399,925 | $56,768,139 | $35,762,265 | $28,851,049 | $1,436,554,844 |

Real Property Taxes Paid | $36,015 | $35,974 | $81,222 | $219,737 | $220,446 | $220,399 | $422,312 | $734,746 | $937,372 | $24,629,638 |

Total Investment | $0 | $0 | $89,595,126 | $0 | $0 | $0 | $121,493,976 | $212,608,246 | $65,287,291 | $3,226,640,611 |

PAGE 13
Nebraska Wind Investment Timeline

Nebraska Wind Energy Generation Capacity Timeline*

- **May 2007 – LB 629**: Creates the Rural Community-Based Energy Development Act which authorizes CBED wind energy projects.
- **May 2009 – LB 561**: Allows public power districts to waive their right of eminent domain authority for certain wind energy projects—will allow those districts to reach agreements with private developers of wind farms.
- **April 2010 – LB 1048**: Allows private developers to develop, own, and operate wind energy facilities for the export of wind energy from the state—also changes the way property taxes are collected, replaces personal property tax with a nameplate capacity tax.
- **June 2013 – LB 104**: Wind Energy Projects are added to the Nebraska Advantage Act making them eligible for sales tax rebates.
- **April 2016 – LB 824**: Changed provisions related to certified renewable export facilities and provided an exemption of certain privately developed renewable energy generation facilities.

Wind Energy Projects Megawatts of Capacity taken from Nebraska Energy Office: http://www.neo.ne.gov/statshtml/89.htm
APPENDIX III
Selected Economic Impacts by Legislative District

1. Ainsworth (2005)
 Local Spending into Economy – $23.10 mill.
 Nameplate Capacity Taxes Paid – $2.87 mill.
 Landowner Lease Payments – $2.45 mill.
 Real Property Taxes Paid – $2.59 mill.

 Local Spending into Economy – $71.32 mill.
 Landowner Lease Payments – $3.23 mill.

3. Cottonwood I (2017)
 Local Spending into Economy – $30.64 mill.
 Nameplate Capacity Taxes Paid – $527,700
 Landowner Lease Payments – $455,000
 Real Property Taxes Paid – $466,200

 Local Spending into Economy – $297.22 mill.
 Landowner Lease Payments – $3.93 mill.
 Real Property Taxes Paid – $3.94 mill.

5. Flatwater (2010)
 Local Spending into Economy – $22.40 mill.
 Nameplate Capacity Taxes Paid – $1.83 mill.
 Landowner Lease Payments – $1.56 mill.
 Real Property Taxes Paid – $1.67 mill.

 Local Spending into Economy – $247.01 mill.
 Landowner Lease Payments – $4.92 mill.
 Real Property Taxes Paid – $4.67 mill.

 Local Spending into Economy – $44.96 mill.
 Landowner Lease Payments – $3.25 mill.
 Real Property Taxes Paid – $2.82 mill.

8. Steele Flats (2013)
 Local Spending into Economy – $26.89 mill.
 Nameplate Capacity Taxes Paid – $1.49 mill.
 Landowner Lease Payments – $1.28 mill.
 Real Property Taxes Paid – $1.28 mill.